CWE Detail – CWE-1244
Description
The product uses physical debug or test
        interfaces with support for multiple access levels, but it
        assigns the wrong debug access level to an internal asset,
        providing unintended access to the asset from untrusted debug
        agents.
Extended Description
Debug authorization can have multiple levels of
	  access, defined such that different system internal assets
	  are accessible based on the current authorized debug
	  level. Other than debugger authentication (e.g., using
	  passwords or challenges), the authorization can also be
	  based on the system state or boot stage. For example, full
	  system debug access might only be allowed early in boot
	  after a system reset to ensure that previous session data is
	  not accessible to the authenticated debugger. If this protection mechanism does not ensure that
          internal assets have the correct debug access level during
          each boot stage or change in system state, an attacker could
          obtain sensitive information from the internal asset using a
          debugger.
Threat-Mapped Scoring
Score: 3.0
Priority: P2 - Serious (High)
Observed Examples (CVEs)
• CVE-2019-18827: After ROM code execution, JTAG access is disabled. But before the ROM code is executed, JTAG access is possible, allowing a user full system access.  This allows a user to modify the boot flow and successfully bypass the secure-boot process.
Related Attack Patterns (CAPEC)
CAPEC-114
Attack TTPs
• T1548: Abuse Elevation Control Mechanism (Tactics: privilege-escalation, defense-evasion)
Modes of Introduction
• Architecture and Design: N/A
• Implementation: N/A
Common Consequences
• Impact: Read Memory — Notes: 
• Impact: Modify Memory — Notes: 
• Impact: Gain Privileges or Assume Identity, Bypass Protection Mechanism — Notes: 
Potential Mitigations
• Architecture and Design: For security-sensitive assets accessible over debug/test interfaces, only allow trusted agents. (Effectiveness: High)
• Architecture and Design: Apply blinding [REF-1219] or masking techniques in strategic areas. (Effectiveness: Limited)
• Implementation: Add shielding or tamper-resistant protections to the device, which increases the difficulty and cost for accessing debug/test interfaces. (Effectiveness: Limited)
Applicable Platforms
• None (Class: Not Language-Specific, Prevalence: Undetermined)
Demonstrative Examples
• This means that since the end user has access to JTAG at system reset and during ROM code execution before control is transferred to user software, a JTAG user can modify the boot flow and subsequently disclose all CPU information, including data-encryption keys.
• The following code [REF-1377] illustrates an instance of a vulnerable implementation of debug mode. The core correctly checks if the debug requests have sufficient privileges and enables the debug_mode_d and debug_mode_q signals. It also correctly checks for debug password and enables umode_i signal.
Notes
• Relationship: CWE-1191 and CWE-1244 both involve physical debug access,
	  but the weaknesses are different. CWE-1191 is effectively
	  about missing authorization for a debug interface,
	  i.e. JTAG.  CWE-1244 is about providing internal assets with
	  the wrong debug access level, exposing the asset to
	  untrusted debug agents.




