CWE Detail – CWE-1285
Description
The product receives input that is expected to specify an index, position, or offset into an indexable resource such as a buffer or file, but it does not validate or incorrectly validates that the specified index/position/offset has the required properties.
Extended Description
Often, indexable resources such as memory buffers or files can be accessed using a specific position, index, or offset, such as an index for an array or a position for a file. When untrusted input is not properly validated before it is used as an index, attackers could access (or attempt to access) unauthorized portions of these resources. This could be used to cause buffer overflows, excessive resource allocation, or trigger unexpected failures.
Threat-Mapped Scoring
Score: 1.8
Priority: P4 - Informational (Low)
Observed Examples (CVEs)
• CVE-2005-0369: large ID in packet used as array index
• CVE-2001-1009: negative array index as argument to POP LIST command
Modes of Introduction
• Implementation: N/A
Common Consequences
• Impact: Varies by Context — Notes:
Potential Mitigations
• Implementation: Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. (Effectiveness: High)
Applicable Platforms
• None (Class: Not Language-Specific, Prevalence: Often)
Demonstrative Examples
• In this example the message number retrieved from the buffer could be a value that is outside the allowable range of indices for the array and could possibly be a negative number. Without proper validation of the value to be used for the array index an array overflow could occur and could potentially lead to unauthorized access to memory addresses and system crashes. The value of the array index should be validated to ensure that it is within the allowable range of indices for the array as in the following code.
• In this example the integer value used as the array index that is provided by the user may be outside the allowable range of indices for the array which may provide unexpected results or cause the application to fail. The integer value used for the array index should be validated to ensure that it is within the allowable range of indices for the array as in the following code.
• The programmer allows the user to specify which element in the list to select, however an attacker can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126).
Notes
• Maintenance: This entry is still under development and will continue to see updates and content improvements.

