CWE Detail – CWE-1335
Description
An integer value is specified to be shifted by a negative amount or an amount greater than or equal to the number of bits contained in the value causing an unexpected or indeterminate result.
Extended Description
Specifying a value to be shifted by a negative amount is undefined in various languages. Various computer architectures implement this action in different ways. The compilers and interpreters when generating code to accomplish a shift generally do not do a check for this issue. Specifying an over-shift, a shift greater than or equal to the number of bits contained in a value to be shifted, produces a result which varies by architecture and compiler. In some languages, this action is specifically listed as producing an undefined result.
Threat-Mapped Scoring
Score: 0.0
Priority: Unclassified
Observed Examples (CVEs)
• CVE-2009-4307: An unexpected large value in the ext4 filesystem causes an overshift condition resulting in a divide by zero.
• CVE-2012-2100: An unexpected large value in the ext4 filesystem causes an overshift condition resulting in a divide by zero - fix of CVE-2009-4307.
• CVE-2020-8835: An overshift in a kernel allowed out of bounds reads and writes resulting in a root takeover.
• CVE-2015-1607: Program is not properly handling signed bitwise left-shifts causing an overlapping memcpy memory range error.
• CVE-2016-9842: Compression function improperly executes a signed left shift of a negative integer.
• CVE-2018-18445: Some kernels improperly handle right shifts of 32 bit numbers in a 64 bit register.
• CVE-2013-4206: Putty has an incorrectly sized shift value resulting in an overshift.
• CVE-2018-20788: LED driver overshifts under certain conditions resulting in a DoS.
Modes of Introduction
• Implementation: Adding shifts without properly verifying the size and sign of the shift amount.
Common Consequences
• Impact: DoS: Crash, Exit, or Restart — Notes:
Potential Mitigations
• Implementation: Implicitly or explicitly add checks and mitigation for negative or over-shift values. (Effectiveness: N/A)
Applicable Platforms
• C (Class: None, Prevalence: Undetermined)
• C++ (Class: None, Prevalence: Undetermined)
• C# (Class: None, Prevalence: Undetermined)
• Java (Class: None, Prevalence: Undetermined)
• JavaScript (Class: None, Prevalence: Undetermined)
Demonstrative Examples
• The example above ends up with a shift amount of -5. The hexadecimal value is FFFFFFFFFFFFFFFD which, when bits above the 6th bit are masked off, the shift amount becomes a binary shift value of 111101 which is 61 decimal. A shift of 61 produces a very different result than -5. The previous example is a very simple version of the following code which is probably more realistic of what happens in a real system.

