CWE Detail – CWE-1421
Description
A processor event may allow transient operations to access
			architecturally restricted data (for example, in another address
			space) in a shared microarchitectural structure (for example, a CPU
			cache), potentially exposing the data over a covert channel.
Extended Description
Many commodity processors have Instruction Set Architecture (ISA)
			features that protect software components from one another. These
			features can include memory segmentation, virtual memory, privilege
			rings, trusted execution environments, and virtual machines, among
			others. For example, virtual memory provides each process with its own
			address space, which prevents processes from accessing each other's
			private data. Many of these features can be used to form
			hardware-enforced security boundaries between software components. Many commodity processors also share microarchitectural resources that
			cache (temporarily store) data, which may be confidential. These
			resources may be shared across processor contexts, including across
			SMT threads, privilege rings, or others. When transient operations allow access to ISA-protected data in a
			shared microarchitectural resource, this might violate users'
			expectations of the ISA feature that is bypassed. For example, if
			transient operations can access a victim's private data in a shared
			microarchitectural resource, then the operations' microarchitectural
			side effects may correspond to the accessed data. If an attacker can
			trigger these transient operations and observe their side effects
			through a covert channel [REF-1400], then the attacker may be able to infer the
			victim's private data. Private data could include sensitive program
			data, OS/VMM data, page table data (such as memory addresses), system
			configuration data (see Demonstrative Example 3), or any other data
			that the attacker does not have the required privileges to access.
Threat-Mapped Scoring
Score: 1.8
Priority: P4 - Informational (Low)
Observed Examples (CVEs)
• CVE-2017-5715: A fault may allow transient user-mode operations to
				access kernel data cached in the L1D, potentially exposing the data
				over a covert channel.
• CVE-2018-3615: A fault may allow transient non-enclave operations to
				access SGX enclave data cached in the L1D, potentially exposing the
				data over a covert channel.
• CVE-2019-1135: A TSX Asynchronous Abort may allow transient operations
				to access architecturally restricted data, potentially exposing the
				data over a covert channel.
Modes of Introduction
• Architecture and Design: This weakness can be introduced during hardware architecture and
				design if a data path allows architecturally restricted data to
				propagate to operations that execute before an older mis-prediction or
				processor event (such as an exception) is caught.
• Implementation: This weakness can be introduced during system software
				implementation if state-sanitizing operations are not invoked when
				switching from one context to another, according to the hardware
				vendor's recommendations for mitigating the weakness.
• System Configuration: This weakness can be introduced if the system has not been
				configured according to the hardware vendor's recommendations for
				mitigating the weakness.
• Architecture and Design: This weakness can be introduced when an access control check
				(for example, checking page permissions) can proceed in parallel with
				the access operation (for example, a load) that is being checked. If
				the processor can allow the access operation to execute before the
				check completes, this race condition may allow subsequent transient
				operations to expose sensitive information.
Common Consequences
• Impact: Read Memory — Notes: 
Potential Mitigations
• Architecture and Design: Hardware designers may choose to engineer the processor's
				pipeline to prevent architecturally restricted data from being used by
				operations that can execute transiently. (Effectiveness: High)
• Architecture and Design: Hardware designers may choose not to share
				microarchitectural resources that can contain sensitive data, such as
				fill buffers and store buffers. (Effectiveness: Moderate)
• Architecture and Design: Hardware designers may choose to sanitize specific
				microarchitectural state (for example, store buffers) when the
				processor transitions to a different context, such as whenever a
				system call is invoked. Alternatively, the hardware may expose
				instruction(s) that allow software to sanitize microarchitectural
				state according to the user or system administrator's threat
				model. These mitigation approaches are similar to those that address
				CWE-226; however, sanitizing microarchitectural state may not be the
				optimal or best way to mitigate this weakness on every processor
				design. (Effectiveness: Moderate)
• Architecture and Design: The hardware designer can attempt to prevent transient
				execution from causing observable discrepancies in specific covert
				channels. (Effectiveness: Limited)
• Architecture and Design: Software architects may design software to enforce strong
				isolation between different contexts. For example, kernel page table
				isolation (KPTI) mitigates the Meltdown vulnerability [REF-1401] by
				separating user-mode page tables from kernel-mode page tables, which
				prevents user-mode processes from using Meltdown to transiently access
				kernel memory [REF-1404]. (Effectiveness: Limited)
• Build and Compilation: If the weakness is exposed by a single instruction (or a
				small set of instructions), then the compiler (or JIT, etc.) can be
				configured to prevent the affected instruction(s) from being
				generated, and instead generate an alternate sequence of instructions
				that is not affected by the weakness. (Effectiveness: Limited)
• Build and Compilation: Use software techniques (including the use of
				serialization instructions) that are intended to reduce the number of
				instructions that can be executed transiently after a processor event
				or misprediction. (Effectiveness: Incidental)
• Implementation: System software can mitigate this weakness by invoking
				state-sanitizing operations when switching from one context to
				another, according to the hardware vendor's recommendations. (Effectiveness: Limited)
• System Configuration: Some systems may allow the user to disable (for example,
				in the BIOS) sharing of the affected resource. (Effectiveness: Limited)
• System Configuration: Some systems may allow the user to disable (for example,
				in the BIOS) microarchitectural features that allow transient access
				to architecturally restricted data. (Effectiveness: Limited)
• Patching and Maintenance: The hardware vendor may provide a patch to sanitize the
				affected shared microarchitectural state when the processor
				transitions to a different context. (Effectiveness: Moderate)
• Patching and Maintenance: This kind of patch may not be feasible or
				implementable for all processors or all weaknesses. (Effectiveness: Limited)
• Requirements: Processor designers, system software vendors, or other
				agents may choose to restrict the ability of unprivileged software to
				access to high-resolution timers that are commonly used to monitor
				covert channels. (Effectiveness: Defense in Depth)
Applicable Platforms
• None (Class: Not Language-Specific, Prevalence: Undetermined)
Demonstrative Examples
• Vulnerable processors may return kernel data from a shared
				microarchitectural resource in line 4, for example, from the
				processor's L1 data cache. Since this vulnerability involves a race
				condition, the mov in line 4 may not always return kernel data (that
				is, whenever the check "wins" the race), in which case this
				demonstration code re-attempts the access in line 6. The accessed data
				is multiplied by 4KB, a common page size, to make it easier to observe
				via a cache covert channel after the transmission in line 7. The use
				of cache covert channels to observe the side effects of transient
				execution has been described in [REF-1408].
• N/A
• N/A




