CWE Detail – CWE-1423
Description
Shared microarchitectural predictor state may allow code to influence
				transient execution across a hardware boundary, potentially exposing
				data that is accessible beyond the boundary over a covert channel.
Extended Description
Many commodity processors have Instruction Set Architecture (ISA)
				features that protect software components from one another. These
				features can include memory segmentation, virtual memory, privilege
				rings, trusted execution environments, and virtual machines, among
				others. For example, virtual memory provides each process with its own
				address space, which prevents processes from accessing each other's
				private data. Many of these features can be used to form
				hardware-enforced security boundaries between software components. When separate software components (for example, two processes) share
				microarchitectural predictor state across a hardware boundary, code in
				one component may be able to influence microarchitectural predictor
				behavior in another component. If the predictor can cause transient
				execution, the shared predictor state may allow an attacker to
				influence transient execution in a victim, and in a manner that could
				allow the attacker to infer private data from the victim by monitoring
				observable discrepancies (CWE-203) in a covert channel [REF-1400]. Predictor state may be shared when the processor transitions from one
				component to another (for example, when a process makes a system call
				to enter the kernel). Many commodity processors have features which
				prevent microarchitectural predictions that occur before a boundary
				from influencing predictions that occur after the boundary. Predictor state may also be shared between hardware threads, for
				example, sibling hardware threads on a processor that supports
				simultaneous multithreading (SMT). This sharing may be benign if the
				hardware threads are simultaneously executing in the same software
				component, or it could expose a weakness if one sibling is a malicious
				software component, and the other sibling is a victim software
				component. Processors that share microarchitectural predictors between
				hardware threads may have features which prevent microarchitectural
				predictions that occur on one hardware thread from influencing
				predictions that occur on another hardware thread. Features that restrict predictor state sharing across transitions or
				between hardware threads may be always-on, on by default, or may
				require opt-in from software.
Threat-Mapped Scoring
Score: 1.8
Priority: P4 - Informational (Low)
Observed Examples (CVEs)
• CVE-2017-5754: (Branch Target Injection, BTI, Spectre v2). Shared
					microarchitectural indirect branch predictor state may allow code to
					influence transient execution across a process, VM, or privilege
					boundary, potentially exposing data that is accessible beyond the
					boundary.
• CVE-2022-0001: (Branch History Injection, BHI, Spectre-BHB). Shared
					branch history state may allow user-mode code to influence transient
					execution in the kernel, potentially exposing kernel data over a
					covert channel.
• CVE-2021-33149: (RSB underflow, Retbleed). Shared return stack buffer
					state may allow code that executes before a prediction barrier to
					influence transient execution after the prediction barrier,
					potentially exposing data that is accessible beyond the barrier over a
					covert channel.
Modes of Introduction
• Architecture and Design: This weakness can be introduced during hardware architecture and
					design if predictor state is not properly isolated between modes (for
					example, user mode and kernel mode), if predictor state is not
					isolated between hardware threads, or if it is not isolated between
					other kinds of execution contexts supported by the processor.
• Implementation: This weakness can be introduced during system software
					implementation if predictor-state-sanitizing operations (for example,
					the indirect branch prediction barrier on Intel x86) are not invoked
					when switching from one context to another.
• System Configuration: This weakness can be introduced if the system has not been
					configured according to the hardware vendor's recommendations for
					mitigating the weakness.
Common Consequences
• Impact: Read Memory — Notes: 
Potential Mitigations
• Architecture and Design: The hardware designer can attempt to prevent transient
					execution from causing observable discrepancies in specific covert
					channels. (Effectiveness: N/A)
• Architecture and Design: Hardware designers may choose to use microarchitectural
					bits to tag predictor entries. For example, each predictor entry may
					be tagged with a kernel-mode bit which, when set, indicates that the
					predictor entry was created in kernel mode. The processor can use this
					bit to enforce that predictions in the current mode must have been
					trained in the current mode. This can prevent malicious cross-mode
					training, such as when user-mode software attempts to create predictor
					entries that influence transient execution in the kernel. Predictor
					entry tags can also be used to associate each predictor entry with the
					SMT thread that created it, and thus the processor can enforce that
					each predictor entry can only be used by the SMT thread that created
					it. This can prevent an SMT thread from using predictor entries
					crafted by a malicious sibling SMT thread. (Effectiveness: Moderate)
• Architecture and Design: Hardware designers may choose to sanitize
					microarchitectural predictor state (for example, branch prediction
					history) when the processor transitions to a different context, for
					example, whenever a system call is invoked. Alternatively, the
					hardware may expose instruction(s) that allow software to sanitize
					predictor state according to the user's threat model. For example,
					this can allow operating system software to sanitize predictor state
					when performing a context switch from one process to another. (Effectiveness: Moderate)
• Implementation: System software can mitigate this weakness by invoking
					predictor-state-sanitizing operations (for example, the indirect
					branch prediction barrier on Intel x86) when switching from one
					context to another, according to the hardware vendor's
					recommendations. (Effectiveness: Moderate)
• Build and Compilation: If the weakness is exposed by a single instruction (or a
					small set of instructions), then the compiler (or JIT, etc.) can be
					configured to prevent the affected instruction(s) from being
					generated. One prominent example of this mitigation is retpoline
					([REF-1414]). (Effectiveness: Limited)
• Build and Compilation: Use control-flow integrity (CFI) techniques to constrain
					the behavior of instructions that redirect the instruction pointer,
					such as indirect branch instructions. (Effectiveness: Moderate)
• Build and Compilation: Use software techniques (including the use of
					serialization instructions) that are intended to reduce the number of
					instructions that can be executed transiently after a processor event
					or misprediction. (Effectiveness: Incidental)
• System Configuration: Some systems may allow the user to disable predictor
					sharing. For example, this could be a BIOS configuration, or a
					model-specific register (MSR) that can be configured by the operating
					system or virtual machine monitor. (Effectiveness: Moderate)
• Patching and Maintenance: The hardware vendor may provide a patch to, for example,
					sanitize predictor state when the processor transitions to a different
					context, or to prevent predictor entries from being shared across SMT
					threads. A patch may also introduce new ISA that allows software to
					toggle a mitigation. (Effectiveness: Moderate)
• Documentation: If a hardware feature can allow microarchitectural
					predictor state to be shared between contexts, SMT threads, or other
					architecturally defined boundaries, the hardware designer may opt to
					disclose this behavior in architecture documentation. This
					documentation can inform users about potential consequences and
					effective mitigations. (Effectiveness: High)
• Requirements: Processor designers, system software vendors, or other
					agents may choose to restrict the ability of unprivileged software to
					access to high-resolution timers that are commonly used to monitor
					covert channels. (Effectiveness: N/A)
Applicable Platforms
• None (Class: Not Language-Specific, Prevalence: Undetermined)
Demonstrative Examples
• To successfully exploit this code sequence to disclose the victim's
					private data, the attacker must also be able to find an indirect
					branch site within the victim, where the attacker controls the values
					in edi and ebx, and the attacker knows the value in edx as shown above
					at the indirect branch site. A proof-of-concept cross-thread BTI attack might proceed as follows: The attacker thread and victim thread must be co-scheduled on the same physical processor core. The attacker thread must train the shared branch predictor so that
					when the victim thread reaches indirect_branch_site, the jmp
					instruction will be predicted to target example_code_sequence instead
					of the correct architectural target. The training procedure may vary
					by processor, and the attacker may need to reverse-engineer the branch
					predictor to identify a suitable training algorithm. This step assumes that the attacker can control some values in the
					victim program, specifically the values in edi and ebx at
					indirect_branch_site. When the victim reaches indirect_branch_site the
					processor will (mis)predict example_code_sequence as the target and
					(transiently) execute the adc instructions. If the attacker chooses
					ebx so that `ebx = m 0x13BE13BD - edx, then the first adc will load 32 bits from
							address m in the victim's address space and add *m (the data loaded from)
							to the attacker-controlled base address in edi. The second
							adc instruction accesses a location in memory whose address corresponds
							to *m`. The adversary uses a covert channel analysis technique such as
					Flush+Reload ([REF-1416]) to infer the value of the victim's private data
					*m.
• N/A




