CWE Detail – CWE-1427
Description
The product uses externally-provided data to build prompts provided to
large language models (LLMs), but the way these prompts are constructed
causes the LLM to fail to distinguish between user-supplied inputs and
developer provided system directives.
Extended Description
When prompts are constructed using externally controllable data, it is
often possible to cause an LLM to ignore the original guidance provided by
its creators (known as the "system prompt") by inserting malicious
instructions in plain human language or using bypasses such as special
characters or tags. Because LLMs are designed to treat all instructions as
legitimate, there is often no way for the model to differentiate between
what prompt language is malicious when it performs inference and returns
data. Many LLM systems incorporate data from other adjacent products or
external data sources like Wikipedia using API calls and retrieval
augmented generation (RAG). Any external sources in use that may contain
untrusted data should also be considered potentially malicious.
Threat-Mapped Scoring
Score: 1.8
Priority: P4 - Informational (Low)
Observed Examples (CVEs)
• CVE-2023-32786: Chain: LLM integration framework has prompt injection
				(CWE-1427) that allows an attacker to force the service to retrieve
				data from an arbitrary URL, essentially providing SSRF (CWE-918) and
				potentially injecting content into downstream tasks.
• CVE-2024-5184: ML-based email analysis product uses an
				API service that allows a malicious user to inject a
				direct prompt and take over the service logic, forcing
				it to leak the standard hard-coded system prompts
				and/or execute unwanted prompts to leak sensitive
				data.
• CVE-2024-5565: Chain: library for generating SQL via LLMs using RAG uses
				a prompt function to present the user with visualized results,
				allowing altering of the prompt using prompt injection (CWE-1427) to
				run arbitrary Python code (CWE-94) instead of the intended
				visualization code.
Modes of Introduction
• Architecture and Design: LLM-connected applications that do not distinguish between
trusted and untrusted input may introduce this weakness. If such
systems are designed in a way where trusted and untrusted instructions
are provided to the model for inference without differentiation, they
may be susceptible to prompt injection and similar attacks.
• Implementation: When designing the application, input validation should be
applied to user input used to construct LLM system prompts. Input
validation should focus on mitigating well-known software security
risks (in the event the LLM is given agency to use tools or perform
API calls) as well as preventing LLM-specific syntax from being
included (such as markup tags or similar).
• Implementation: This weakness could be introduced if training does not account
for potentially malicious inputs.
• System Configuration: Configuration could enable model parameters to be manipulated
when this was not intended.
• Integration: This weakness can occur when integrating the model into the software.
• Bundling: This weakness can occur when bundling the model with the software.
Common Consequences
• Impact: Execute Unauthorized Code or Commands, Varies by Context — Notes: 
• Impact: Read Application Data — Notes: 
• Impact: Modify Application Data, Execute Unauthorized Code or Commands — Notes: 
• Impact: Read Application Data, Modify Application Data, Gain Privileges or Assume Identity — Notes: 
Potential Mitigations
• Architecture and Design: LLM-enabled applications should be designed to ensure
proper sanitization of user-controllable input, ensuring that no
intentionally misleading or dangerous characters can be
included. Additionally, they should be designed in a way that ensures
that user-controllable input is identified as untrusted and
potentially dangerous. (Effectiveness: High)
• Implementation: LLM prompts should be constructed in a way that
effectively differentiates between user-supplied input and
developer-constructed system prompting to reduce the chance of model
confusion at inference-time. (Effectiveness: Moderate)
• Architecture and Design: LLM-enabled applications should be designed to ensure
proper sanitization of user-controllable input, ensuring that no
intentionally misleading or dangerous characters can be
included. Additionally, they should be designed in a way that ensures
that user-controllable input is identified as untrusted and
potentially dangerous. (Effectiveness: High)
• Implementation: Ensure that model training includes training examples
that avoid leaking secrets and disregard malicious inputs. Train the
model to recognize secrets, and label training data
appropriately. Note that due to the non-deterministic nature of
prompting LLMs, it is necessary to perform testing of the same test
case several times in order to ensure that troublesome behavior is not
possible. Additionally, testing should be performed each time a new
model is used or a model's weights are updated. (Effectiveness: N/A)
• Installation: During deployment/operation, use components that operate externally to the system to
monitor the output and act as a moderator. These components are called
different terms, such as supervisors or guardrails. (Effectiveness: N/A)
• System Configuration: During system configuration, the model could be
fine-tuned to better control and neutralize potentially dangerous
inputs. (Effectiveness: N/A)
Applicable Platforms
• None (Class: Not Language-Specific, Prevalence: Undetermined)
Demonstrative Examples
• To avoid XSS risks, the code ensures that the response from the chatbot is properly encoded for HTML output. If the user provides CWE-77 and CWE-78, then the resulting prompt would look like:
• This agent is provided minimal context on how to treat dangerous
				requests for a secret. Suppose the user provides an input like:




