CWE Detail – CWE-1429
Description
The product has a hardware interface that silently discards operations
			in situations for which feedback would be security-relevant, such as
			the timely detection of failures or attacks.
Extended Description
While some systems intentionally withhold feedback as a security
			 measure, this approach must be strictly controlled to ensure it does
			 not obscure operational failures that require prompt detection and
			 remediation. Without these essential confirmations, failures go
			 undetected, increasing the risk of data loss, security
			 vulnerabilities, and overall system instability. Even when withholding
			 feedback is an intentional part of a security policy designed, for
			 example, to prevent attackers from gleaning sensitive internal
			 details, the absence of expected feedback becomes a critical weakness
			 when it masks operational failures that require prompt detection and
			 remediation. For instance, certain encryption algorithms always return ciphertext
			 regardless of errors to prevent attackers from gaining insight into
			 internal state details. However, if such an algorithm fails to
			 generate the expected ciphertext and provides no error feedback, the
			 system cannot distinguish between a legitimate output and a
			 malfunction. This can lead to undetected cryptographic failures,
			 potentially compromising data security and system reliability. Without
			 proper notification, a critical failure might remain hidden,
			 undermining both the reliability and security of the process. Therefore, this weakness captures issues across various hardware
			 interfaces where operations are discarded without any feedback, error
			 handling, or logging. Such omissions can lead to data loss, security
			 vulnerabilities, and system instability, with potential impacts
			 ranging from minor to catastrophic. For some kinds of hardware products, some errors may be correctly
			 identified and subsequently discarded, and the lack of feedback may
			 have been an intentional design decision. However, this could result
			 in a weakness if system operators or other authorized entities are not
			 provided feedback about security-critical operations or failures that
			 could prevent the operators from detecting and responding to an
			 attack. For example: In a System-on-Chip (SoC) platform, write operations to reserved
			 memory addresses might be correctly identified as invalid and
			 subsequently discarded. However, if no feedback is provided to
			 system operators, they may misinterpret the device's state, failing
			 to recognize conditions that could lead to broader failures or
			 security vulnerabilities. For example, if an attacker attempts
			 unauthorized writes to protected regions, the system may silently
			 discard these writes without alerting security mechanisms. This lack
			 of feedback could obscure intrusion attempts or misconfigurations,
			 increasing the risk of unnoticed system compromise Microcontroller Interrupt Systems: When interrupts are silently
			 ignored due to priority conflicts or internal errors without
			 notifying higher-level control, it becomes challenging to diagnose
			 system failures or detect potential security breaches in a timely
			 manner. Network Interface Controllers: Dropping packets - perhaps due to
			 buffer overflows - without any error feedback can not only cause data
			 loss but may also contribute to exploitable timing discrepancies
			 that reveal sensitive internal processing details.
Threat-Mapped Scoring
Score: 1.8
Priority: P4 - Informational (Low)
Observed Examples (CVEs)
• [REF-1468]: Open source silicon root of trust (RoT) product does not immediately report when an integrity check fails for memory requests, causing the product to accept and continue processing data [REF-1468]
Modes of Introduction
• Architecture and Design: This weakness can be introduced during the architecture and
design phase when the system does not incorporate proper mechanisms
for error reporting or feedback for discarded operations, such as when
handling reserved addresses or unexecuted instructions.
• Implementation: It can also arise during implementation if developers fail to
include appropriate feedback or logging for critical operations. This
leads to silent failures in certain scenarios like interrupt handling
or network buffer overflows.
• Requirements: A further layer of complexity emerges when considering
specifications. The weakness may stem either from ambiguous product
design specifications that fail to delineate when feedback should
occur or from implementations that do not adhere to existing
requirements. In either case, the result is the same: feedback that is
critical for detecting operational failures or security breaches is
missing.
Common Consequences
• Impact: Read Memory, Read Files or Directories — Notes:
• Impact: Modify Memory, Modify Files or Directories — Notes:
• Impact: DoS: Resource Consumption (Memory), DoS: Crash, Exit, or Restart — Notes:
Potential Mitigations
• Architecture and Design: Incorporate logging and feedback mechanisms during the
				design phase to ensure proper handling of discarded operations. (Effectiveness: High)
• Implementation: Developers should ensure that every critical operation
				includes proper logging or error feedback mechanisms. (Effectiveness: Moderate)
Applicable Platforms
• C (Class: None, Prevalence: Undetermined)
• C++ (Class: None, Prevalence: Undetermined)
• Verilog (Class: None, Prevalence: Undetermined)
• None (Class: Hardware Description Language, Prevalence: Undetermined)
• None (Class: Not Language-Specific, Prevalence: Undetermined)
Demonstrative Examples
• The omission of feedback for the dropped lower-priority interrupt can
					cause developers to misinterpret the state of the system, leading to
					incorrect assumptions and potential system failures, such as missed
					sensor readings. Attackers might leverage this lack of visibility to induce conditions
					that lead to timing side-channels. For example, an attacker could
					intentionally flood the system with high-priority interrupts, forcing
					the system to discard lower-priority interrupts consistently. If these
					discarded interrupts correspond to processes executing critical
					security functions (e.g., cryptographic key handling), an attacker
					might measure system timing variations to infer when and how those
					functions are executing. This creates a timing side channel that could
					be used to extract sensitive information. Moreover, since these
					lower-priority interrupts are not reported, the system remains unaware
					that critical tasks such as sensor data collection or maintenance
					routines, are being starved of execution. Over time, this can lead to
					functional failures or watchdog time resets in real-time systems. One way to address this problem could be to use structured logging to
					provide visibility into discarded interrupts. This allows
					administrators, developers, or other authorized entities to track
					missed interrupts and optimize the system.
• For system security, if an uncorrectable error occurs but is not
				 reported to the execution core and handled before the core attempts to
				 consume the data that is read/written through the corrupted
				 transactions, then this could enable silent data corruption (SDC)
				 attacks. In the case of confidential compute technologies where system firmware
				 is not a trusted component, error handling controls can be
				 misconfigured to trigger this weakness and attack the assets protected
				 by confidential compute.

