CWE Detail – CWE-180
Description
The product validates input before it is canonicalized, which prevents the product from detecting data that becomes invalid after the canonicalization step.
Extended Description
This can be used by an attacker to bypass the validation and launch attacks that expose weaknesses that would otherwise be prevented, such as injection.
Threat-Mapped Scoring
Score: 0.0
Priority: Unclassified
Observed Examples (CVEs)
• CVE-2002-0433: Product allows remote attackers to view restricted files via an HTTP request containing a "*" (wildcard or asterisk) character.
• CVE-2003-0332: Product modifies the first two letters of a filename extension after performing a security check, which allows remote attackers to bypass authentication via a filename with a .ats extension instead of a .hts extension.
• CVE-2002-0802: Database consumes an extra character when processing a character that cannot be converted, which could remove an escape character from the query and make the application subject to SQL injection attacks.
• CVE-2000-0191: Overlaps "fakechild/../realchild"
• CVE-2004-2363: Product checks URI for "<" and other literal characters, but does it before hex decoding the URI, so "%3E" and other sequences are allowed.
Related Attack Patterns (CAPEC)
CAPEC-267
CAPEC-3
CAPEC-71
CAPEC-78
CAPEC-79
CAPEC-80
Attack TTPs
• T1027: Obfuscated Files or Information (Tactics: defense-evasion)
Modes of Introduction
• Implementation: N/A
Common Consequences
• Impact: Bypass Protection Mechanism — Notes: 
Potential Mitigations
• Implementation: Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have been checked. (Effectiveness: N/A)
Applicable Platforms
• None (Class: Not Language-Specific, Prevalence: Undetermined)
Demonstrative Examples
• The problem with the above code is that the validation step occurs before canonicalization occurs. An attacker could provide an input path of "/safe_dir/../" that would pass the validation step. However, the canonicalization process sees the double dot as a traversal to the parent directory and hence when canonicized the path would become just "/".
Notes
• Relationship: This overlaps other categories.




