CWE Detail – CWE-335
Description
The product uses a Pseudo-Random Number Generator (PRNG) but does not correctly manage seeds.
Extended Description
PRNGs are deterministic and, while their output appears
		 random, they cannot actually create entropy. They rely on
		 cryptographically secure and unique seeds for entropy so
		 proper seeding is critical to the secure operation of the
		 PRNG. Management of seeds could be broken down into two main areas: (1) protecting seeds as cryptographic material (such as a cryptographic key); (2) whenever possible, using a uniquely generated seed from
		 a cryptographically secure source PRNGs require a seed as input to generate a stream of
			 numbers that are functionally indistinguishable from
			 random numbers. While the output is, in many cases,
			 sufficient for cryptographic uses, the output of any
			 PRNG is directly determined by the seed provided as
			 input. If the seed can be ascertained by a third party,
			 the entire output of the PRNG can be made known to
			 them. As such, the seed should be kept secret and
			 should ideally not be able to be guessed. For example,
			 the current time may be a poor seed. Knowing the
			 approximate time the PRNG was seeded greatly reduces
			 the possible key space. Seeds do not necessarily need to be unique, but reusing seeds may open up attacks if the seed is discovered.
Threat-Mapped Scoring
Score: 1.8
Priority: P4 - Informational (Low)
Observed Examples (CVEs)
• CVE-2020-7010: Cloud application on Kubernetes generates passwords using a weak random number generator based on deployment time.
• CVE-2019-11495: server uses erlang:now() to seed the PRNG, which
			 results in a small search space for potential random
			 seeds
• CVE-2018-12520: Product's PRNG is not seeded for the generation of session IDs
• CVE-2016-10180: Router's PIN generation is based on rand(time(0)) seeding.
Modes of Introduction
• Implementation: REALIZATION: This weakness is caused during implementation of an architectural security tactic.
Common Consequences
• Impact: Bypass Protection Mechanism, Other — Notes: If a PRNG is used incorrectly, such as using the same seed for each initialization or using a predictable seed, then an attacker may be able to easily guess the seed and thus the random numbers. This could lead to unauthorized access to a system if the seed is used for authentication and authorization.
Applicable Platforms
• None (Class: Not Language-Specific, Prevalence: Undetermined)
Demonstrative Examples
• Because the program uses the same seed value for every invocation of the PRNG, its values are predictable, making the system vulnerable to attack.
• An attacker can easily predict the seed used by these PRNGs, and so also predict the stream of random numbers generated. Note these examples also exhibit CWE-338 (Use of Cryptographically Weak PRNG).
• Since only 2 bytes are used as a seed, an attacker will only need to guess 2^16 (65,536) values before being able to replicate the state of the PRNG.
Notes
• Maintenance: As of CWE 4.5, terminology related to randomness, entropy, and
	 predictability can vary widely. Within the developer and other
	 communities, "randomness" is used heavily. However, within
	 cryptography, "entropy" is distinct, typically implied as a
	 measurement. There are no commonly-used definitions, even within
	 standards documents and cryptography papers. Future versions of
	 CWE will attempt to define these terms and, if necessary,
	 distinguish between them in ways that are appropriate for
	 different communities but do not reduce the usability of CWE for
	 mapping, understanding, or other scenarios.

