CWE Detail – CWE-390
Description
The product detects a specific error, but takes no actions to handle the error.
Extended Description
N/A
Threat-Mapped Scoring
Score: 0.0
Priority: Unclassified
Observed Examples (CVEs)
• CVE-2022-21820: A GPU data center manager detects an error due to a malformed request but does not act on it, leading to memory corruption.
Modes of Introduction
• Implementation: REALIZATION: This weakness is caused during implementation of an architectural security tactic.
Common Consequences
• Impact: Varies by Context, Unexpected State, Alter Execution Logic — Notes: An attacker could utilize an ignored error condition to place the system in an unexpected state that could lead to the execution of unintended logic and could cause other unintended behavior.
Potential Mitigations
• Implementation: Properly handle each exception. This is the recommended solution. Ensure that all exceptions are handled in such a way that you can be sure of the state of your system at any given moment. (Effectiveness: N/A)
• Implementation: If a function returns an error, it is important to either fix the problem and try again, alert the user that an error has happened and let the program continue, or alert the user and close and cleanup the program. (Effectiveness: N/A)
• Testing: Subject the product to extensive testing to discover some of the possible instances of where/how errors or return values are not handled. Consider testing techniques such as ad hoc, equivalence partitioning, robustness and fault tolerance, mutation, and fuzzing. (Effectiveness: N/A)
Applicable Platforms
• None (Class: Not Language-Specific, Prevalence: Undetermined)
Demonstrative Examples
• The conditional successfully detects a NULL return value from malloc indicating a failure, however it does not do anything to handle the problem. Unhandled errors may have unexpected results and may cause the program to crash or terminate.
• The catch statement should contain statements that either attempt to fix the problem or notify the user that an error has occurred and continue processing or perform some cleanup and gracefully terminate the program. The following C++ example contains two catch statements. The first of these will catch a specific error thrown within the try block, and the second catch statement will catch all other errors from within the catch block. Both catch statements will notify the user that an error has occurred, close the file, and rethrow to the block that called the readFile() method for further handling or possible termination of the program.
• The catch statement should contain statements that either attempt to fix the problem, notify the user that an exception has been raised and continue processing, or perform some cleanup and gracefully terminate the program. The following Java example contains three catch statements. The first of these will catch the FileNotFoundException that may be thrown by the FileReader constructor called within the try/catch block. The second catch statement will catch the IOException that may be thrown by the read method called within the try/catch block. The third catch statement will catch all other exceptions thrown within the try block. For all catch statements the user is notified that the exception has been thrown and the exception is rethrown to the block that called the readFile() method for further processing or possible termination of the program. Note that with Java it is usually good practice to use the getMessage() method of the exception class to provide more information to the user about the exception raised.




