CWE Detail – CWE-415
Description
The product calls free() twice on the same memory address.
Extended Description
N/A
Threat-Mapped Scoring
Score: 0.0
Priority: Unclassified
Observed Examples (CVEs)
• CVE-2006-5051: Chain: Signal handler contains too much functionality (CWE-828), introducing a race condition (CWE-362) that leads to a double free (CWE-415).
• CVE-2004-0642: Double free resultant from certain error conditions.
• CVE-2004-0772: Double free resultant from certain error conditions.
• CVE-2005-1689: Double free resultant from certain error conditions.
• CVE-2003-0545: Double free from invalid ASN.1 encoding.
• CVE-2003-1048: Double free from malformed GIF.
• CVE-2005-0891: Double free from malformed GIF.
• CVE-2002-0059: Double free from malformed compressed data.
Modes of Introduction
• Implementation: N/A
Common Consequences
• Impact: Modify Memory, Execute Unauthorized Code or Commands — Notes: 
Potential Mitigations
• Architecture and Design: Choose a language that provides automatic memory management. (Effectiveness: N/A)
• Implementation: Ensure that each allocation is freed only once. After freeing a chunk, set the pointer to NULL to ensure the pointer cannot be freed again. In complicated error conditions, be sure that clean-up routines respect the state of allocation properly. If the language is object oriented, ensure that object destructors delete each chunk of memory only once. (Effectiveness: N/A)
• Implementation: Use a static analysis tool to find double free instances. (Effectiveness: N/A)
Applicable Platforms
• C (Class: None, Prevalence: Undetermined)
• C++ (Class: None, Prevalence: Undetermined)
Demonstrative Examples
• Double free vulnerabilities have two common (and sometimes overlapping) causes:
• N/A
Notes
• Relationship: This is usually resultant from another weakness, such as an unhandled error or race condition between threads. It could also be primary to weaknesses such as buffer overflows.
• Theoretical: It could be argued that Double Free would be most appropriately located as a child of "Use after Free", but "Use" and "Release" are considered to be distinct operations within vulnerability theory, therefore this is more accurately "Release of a Resource after Expiration or Release", which doesn't exist yet.




