CWE Detail – CWE-428
Description
The product uses a search path that contains an unquoted element, in which the element contains whitespace or other separators. This can cause the product to access resources in a parent path.
Extended Description
If a malicious individual has access to the file system, it is possible to elevate privileges by inserting such a file as "C:\Program.exe" to be run by a privileged program making use of WinExec.
Threat-Mapped Scoring
Score: 1.8
Priority: P4 - Informational (Low)
Observed Examples (CVEs)
• CVE-2005-1185: Small handful of others. Program doesn't quote the "C:\Program Files\" path when calling a program to be executed - or any other path with a directory or file whose name contains a space - so attacker can put a malicious program.exe into C:.
• CVE-2005-2938: CreateProcess() and CreateProcessAsUser() can be misused by applications to allow "program.exe" style attacks in C:
• CVE-2000-1128: Applies to "Common Files" folder, with a malicious common.exe, instead of "Program Files"/program.exe.
Modes of Introduction
• Implementation: N/A
Common Consequences
• Impact: Execute Unauthorized Code or Commands — Notes:
Potential Mitigations
• Implementation: Properly quote the full search path before executing a program on the system. (Effectiveness: N/A)
• Implementation: Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. (Effectiveness: N/A)
• Implementation: Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have been checked. (Effectiveness: N/A)
Applicable Platforms
• None (Class: Not Language-Specific, Prevalence: Undetermined)
Demonstrative Examples
• N/A
Notes
• Applicable Platform: This weakness could apply to any OS that supports spaces in filenames, especially any OS that make it easy for a user to insert spaces into filenames or folders, such as Windows. While spaces are technically supported in Unix, the practice is generally avoided. .
• Maintenance: This weakness primarily involves the lack of quoting, which is not explicitly stated as a part of CWE-116. CWE-116 also describes output in light of structured messages, but the generation of a filename or search path (as in this weakness) might not be considered a structured message. An additional complication is the relationship to control spheres. Unlike untrusted search path (CWE-426), which inherently involves control over the definition of a control sphere, this entry concerns a fixed control sphere in which some part of the sphere may be under attacker control. This is not a clean fit under CWE-668 or CWE-610, which suggests that the control sphere model needs enhancement or clarification.

