CWE Detail – CWE-497
Description
The product does not properly prevent sensitive system-level information from being accessed by unauthorized actors who do not have the same level of access to the underlying system as the product does.
Extended Description
Network-based products, such as web applications, often run on top of an operating system or similar environment. When the product communicates with outside parties, details about the underlying system are expected to remain hidden, such as path names for data files, other OS users, installed packages, the application environment, etc. This system information may be provided by the product itself, or buried within diagnostic or debugging messages. Debugging information helps an adversary learn about the system and form an attack plan. An information exposure occurs when system data or debugging information leaves the program through an output stream or logging function that makes it accessible to unauthorized parties. Using other weaknesses, an attacker could cause errors to occur; the response to these errors can reveal detailed system information, along with other impacts. An attacker can use messages that reveal technologies, operating systems, and product versions to tune the attack against known vulnerabilities in these technologies. A product may use diagnostic methods that provide significant implementation details such as stack traces as part of its error handling mechanism.
Threat-Mapped Scoring
Score: 0.0
Priority: Unclassified
Observed Examples (CVEs)
• CVE-2021-32638: Code analysis product passes access tokens as a command-line parameter or through an environment variable, making them visible to other processes via the ps command.
Related Attack Patterns (CAPEC)
CAPEC-170
CAPEC-694
Attack TTPs
• T1614: System Location Discovery (Tactics: discovery)
Modes of Introduction
• Implementation: N/A
Common Consequences
• Impact: Read Application Data — Notes:
Potential Mitigations
• Architecture and Design: Production applications should never use methods that generate internal details such as stack traces and error messages unless that information is directly committed to a log that is not viewable by the end user. All error message text should be HTML entity encoded before being written to the log file to protect against potential cross-site scripting attacks against the viewer of the logs (Effectiveness: N/A)
Applicable Platforms
• None (Class: Not Language-Specific, Prevalence: Undetermined)
Demonstrative Examples
• N/A
• If invoked by an unauthorized web user, it is providing a web page of potentially sensitive information on the underlying system, such as command-line arguments (CWE-497). This program is also potentially vulnerable to a PATH based attack (CWE-426), as an attacker may be able to create malicious versions of the ps or grep commands. While the program does not explicitly raise privileges to run the system commands, the PHP interpreter may by default be running with higher privileges than users.
• Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system will be vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In the example above, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.
• Depending on the system configuration, this information can be dumped to a console, written to a log file, or exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system is vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In the example above, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program.

