CWE Detail – CWE-807
Description
The product uses a protection mechanism that relies on the existence or values of an input, but the input can be modified by an untrusted actor in a way that bypasses the protection mechanism.
Extended Description
Developers may assume that inputs such as cookies, environment variables, and hidden form fields cannot be modified. However, an attacker could change these inputs using customized clients or other attacks. This change might not be detected. When security decisions such as authentication and authorization are made based on the values of these inputs, attackers can bypass the security of the software. Without sufficient encryption, integrity checking, or other mechanism, any input that originates from an outsider cannot be trusted.
Threat-Mapped Scoring
Score: 0.0
Priority: Unclassified
Observed Examples (CVEs)
• CVE-2009-1549: Attacker can bypass authentication by setting a cookie to a specific value.
• CVE-2009-1619: Attacker can bypass authentication and gain admin privileges by setting an "admin" cookie to 1.
• CVE-2009-0864: Content management system allows admin privileges by setting a "login" cookie to "OK."
• CVE-2008-5784: e-dating application allows admin privileges by setting the admin cookie to 1.
• CVE-2008-6291: Web-based email list manager allows attackers to gain admin privileges by setting a login cookie to "admin."
Modes of Introduction
• Architecture and Design: COMMISSION: This weakness refers to an incorrect design related to an architectural security tactic.
• Implementation: N/A
Common Consequences
• Impact: Bypass Protection Mechanism, Gain Privileges or Assume Identity, Varies by Context — Notes: Attackers can bypass the security decision to access whatever is being protected. The consequences will depend on the associated functionality, but they can range from granting additional privileges to untrusted users to bypassing important security checks. Ultimately, this weakness may lead to exposure or modification of sensitive data, system crash, or execution of arbitrary code.
Potential Mitigations
• Architecture and Design: Store state information and sensitive data on the server side only. Ensure that the system definitively and unambiguously keeps track of its own state and user state and has rules defined for legitimate state transitions. Do not allow any application user to affect state directly in any way other than through legitimate actions leading to state transitions. If information must be stored on the client, do not do so without encryption and integrity checking, or otherwise having a mechanism on the server side to catch tampering. Use a message authentication code (MAC) algorithm, such as Hash Message Authentication Code (HMAC) [REF-529]. Apply this against the state or sensitive data that has to be exposed, which can guarantee the integrity of the data - i.e., that the data has not been modified. Ensure that a strong hash function is used (CWE-328). (Effectiveness: N/A)
• Architecture and Design: Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. With a stateless protocol such as HTTP, use a framework that maintains the state for you. Examples include ASP.NET View State [REF-756] and the OWASP ESAPI Session Management feature [REF-45]. Be careful of language features that provide state support, since these might be provided as a convenience to the programmer and may not be considering security. (Effectiveness: N/A)
• Architecture and Design: For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. (Effectiveness: N/A)
• Operation: When using PHP, configure the application so that it does not use register_globals. During implementation, develop the application so that it does not rely on this feature, but be wary of implementing a register_globals emulation that is subject to weaknesses such as CWE-95, CWE-621, and similar issues. (Effectiveness: N/A)
• Architecture and Design: Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Identify all inputs that are used for security decisions and determine if you can modify the design so that you do not have to rely on submitted inputs at all. For example, you may be able to keep critical information about the user's session on the server side instead of recording it within external data. (Effectiveness: N/A)
Applicable Platforms
• None (Class: Not Language-Specific, Prevalence: Undetermined)
Demonstrative Examples
• N/A
• The programmer expects that the AuthenticateUser() check will always be applied, and the "authenticated" cookie will only be set when authentication succeeds. The programmer even diligently specifies a 2-hour expiration for the cookie.
• N/A
• IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can easily forge the source IP address of the packets they send, but response packets will return to the forged IP address. To see the response packets, the attacker has to sniff the traffic between the victim machine and the forged IP address. In order to accomplish the required sniffing, attackers typically attempt to locate themselves on the same subnet as the victim machine. Attackers may be able to circumvent this requirement by using source routing, but source routing is disabled across much of the Internet today. In summary, IP address verification can be a useful part of an authentication scheme, but it should not be the single factor required for authentication.




